Weighted Poincaré-type Inequalities for Cauchy and Other Convex Measures
نویسندگان
چکیده
Brascamp–Lieb-type, weighted Poincaré-type and related analytic inequalities are studied for multidimensional Cauchy distributions and more general κ-concave probability measures (in the hierarchy of convex measures). In analogy with the limiting (infinitedimensional log-concave) Gaussian model, the weighted inequalities fully describe the measure concentration and large deviation properties of this family of measures. Cheeger-type isoperimetric inequalities are investigated similarly, giving rise to a common weight in the class of concave probability measures under consideration.
منابع مشابه
Weighted Poincaré-type Inequalities for Cauchy and Other Convex Measures1 by Sergey
Brascamp–Lieb-type, weighted Poincaré-type and related analytic inequalities are studied for multidimensional Cauchy distributions and more general κ-concave probability measures (in the hierarchy of convex measures). In analogy with the limiting (infinite-dimensional log-concave) Gaussian model, the weighted inequalities fully describe the measure concentration and large deviation properties o...
متن کاملOn weighted isoperimetric and Poincaré-type inequalities
Weighted isoperimetric and Poincaré-type inequalities are studied for κ-concave probability measures (in the hierarchy of convex measures).
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کاملHermite-Hadamard Type Inequalities for MφA-Convex Functions
This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...
متن کاملEigenvalue gaps for the Cauchy process and a Poincaré inequality
A connection between the semigroup of the Cauchy process killed upon exiting a domain D and a mixed boundary value problem for the Laplacian in one dimension higher known as the mixed Steklov problem, was established in [6]. From this, a variational characterization for the eigenvalues λn, n ≥ 1, of the Cauchy process in D was obtained. In this paper we obtain a variational characterization of ...
متن کامل